Getting Started
This page will show you how to get started with OpenTelemetry in Python.
You will learn how you can instrument a simple application automatically, in such a way that traces and metrics are emitted to the console.
Prerequisites
Ensure that you have the following installed locally:
Example Application
The following example uses a basic Flask application. If you are not using Flask, that’s OK — you can use OpenTelemetry Python with other web frameworks as well, such as Django and FastAPI. For a complete list of libraries for supported frameworks, see the registry.
For more elaborate examples, see examples.
Installation
To begin, set up an environment in a new directory:
mkdir otel-getting-started
cd otel-getting-started
python3 -m venv .
source ./bin/activate
Now install Flask:
pip3 install 'flask<3'
Create and launch an HTTP Server
Create a file app.py
and add the following code to it:
from random import randint
from flask import Flask
app = Flask(__name__)
@app.route("/rolldice")
def roll_dice():
return str(roll())
def roll():
return randint(1, 6)
Run the application with the following command and open http://localhost:8080/rolldice in your web browser to ensure it is working.
flask run -p 8080
Instrumentation
Automatic instrumentation will generate telemetry data on your behalf. There are
several options you can take, covered in more detail in
Automatic Instrumentation. Here we’ll use the
opentelemetry-instrument
agent.
Install the opentelemetry-distro
package, which contains the OpenTelemetry
API, SDK and also the tools opentelemetry-bootstrap
and
opentelemetry-instrument
you will use below.
pip install opentelemetry-distro
Run the opentelemetry-bootstrap
command:
opentelemetry-bootstrap -a install
This will install Flask instrumentation.
Run the instrumented app
You can now run your instrumented app with opentelemetry-instrument
and have
it print to the console for now:
opentelemetry-instrument \
--traces_exporter console \
--metrics_exporter console \
flask run -p 8080
Open http://localhost:8080/rolldice in your web browser and reload the page a few times. After a while you should see the spans printed in the console, such as the following:
View example output
{
"name": "/rolldice",
"context": {
"trace_id": "0xdcd253b9501348b63369d83219da0b14",
"span_id": "0x886c05bc23d2250e",
"trace_state": "[]"
},
"kind": "SpanKind.SERVER",
"parent_id": null,
"start_time": "2022-04-27T23:53:11.533109Z",
"end_time": "2022-04-27T23:53:11.534097Z",
"status": {
"status_code": "UNSET"
},
"attributes": {
"http.method": "GET",
"http.server_name": "127.0.0.1",
"http.scheme": "http",
"net.host.port": 5000,
"http.host": "localhost:5000",
"http.target": "/rolldice",
"net.peer.ip": "127.0.0.1",
"http.user_agent": "curl/7.68.0",
"net.peer.port": 52538,
"http.flavor": "1.1",
"http.route": "/rolldice",
"http.status_code": 200
},
"events": [],
"links": [],
"resource": {
"attributes": {
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.14.0",
"telemetry.auto.version": "0.35b0",
"service.name": "unknown_service"
},
"schema_url": ""
}
}
The generated span tracks the lifetime of a request to the /rolldice
route.
Send a few more requests to the endpoint, and then either wait for a little bit or terminate the app and you’ll see metrics in the console output, such as the following:
View example output
{
"resource_metrics": [
{
"resource": {
"attributes": {
"service.name": "unknown_service",
"telemetry.auto.version": "0.34b0",
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.13.0"
},
"schema_url": ""
},
"schema_url": "",
"scope_metrics": [
{
"metrics": [
{
"data": {
"aggregation_temporality": 2,
"data_points": [
{
"attributes": {
"http.flavor": "1.1",
"http.host": "localhost:5000",
"http.method": "GET",
"http.scheme": "http",
"http.server_name": "127.0.0.1"
},
"start_time_unix_nano": 1666077040061693305,
"time_unix_nano": 1666077098181107419,
"value": 0
}
],
"is_monotonic": false
},
"description": "measures the number of concurrent HTTP requests that are currently in-flight",
"name": "http.server.active_requests",
"unit": "requests"
},
{
"data": {
"aggregation_temporality": 2,
"data_points": [
{
"attributes": {
"http.flavor": "1.1",
"http.host": "localhost:5000",
"http.method": "GET",
"http.scheme": "http",
"http.server_name": "127.0.0.1",
"http.status_code": 200,
"net.host.port": 5000
},
"bucket_counts": [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"count": 1,
"explicit_bounds": [
0, 5, 10, 25, 50, 75, 100, 250, 500, 1000
],
"max": 1,
"min": 1,
"start_time_unix_nano": 1666077040063027610,
"sum": 1,
"time_unix_nano": 1666077098181107419
}
]
},
"description": "measures the duration of the inbound HTTP request",
"name": "http.server.duration",
"unit": "ms"
}
],
"schema_url": "",
"scope": {
"name": "opentelemetry.instrumentation.flask",
"schema_url": "",
"version": "0.34b0"
}
}
]
}
]
}
Add manual instrumentation to automatic instrumentation
Automatic instrumentation captures telemetry at the edges of your systems, such as inbound and outbound HTTP requests, but it doesn’t capture what’s going on in your application. For that you’ll need to write some manual instrumentation. Here’s how you can easily link up manual instrumentation with automatic instrumentation.
Traces
First, modify app.py
to include code that initializes a tracer and uses it to
create a trace that’s a child of the one that’s automatically generated:
# These are the necessary import declarations
from opentelemetry import trace
from random import randint
from flask import Flask
# Acquire a tracer
tracer = trace.get_tracer("diceroller.tracer")
app = Flask(__name__)
@app.route("/rolldice")
def roll_dice():
return str(roll())
def roll():
# This creates a new span that's the child of the current one
with tracer.start_as_current_span("roll") as rollspan:
res = randint(1, 6)
rollspan.set_attribute("roll.value", res)
return res
Now run the app again:
opentelemetry-instrument \
--traces_exporter console \
--metrics_exporter console \
flask run -p 8080
When you send a request to the server, you’ll see two spans in the trace emitted
to the console, and the one called roll
registers its parent as the
automatically created one:
View example output
{
"name": "roll",
"context": {
"trace_id": "0x48da59d77e13beadd1a961dc8fcaa74e",
"span_id": "0x40c38b50bc8da6b7",
"trace_state": "[]"
},
"kind": "SpanKind.INTERNAL",
"parent_id": "0x84f8c5d92970d94f",
"start_time": "2022-04-28T00:07:55.892307Z",
"end_time": "2022-04-28T00:07:55.892331Z",
"status": {
"status_code": "UNSET"
},
"attributes": {
"roll.value": 4
},
"events": [],
"links": [],
"resource": {
"attributes": {
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.14.0",
"telemetry.auto.version": "0.35b0",
"service.name": "unknown_service"
},
"schema_url": ""
}
}
{
"name": "/rolldice",
"context": {
"trace_id": "0x48da59d77e13beadd1a961dc8fcaa74e",
"span_id": "0x84f8c5d92970d94f",
"trace_state": "[]"
},
"kind": "SpanKind.SERVER",
"parent_id": null,
"start_time": "2022-04-28T00:07:55.891500Z",
"end_time": "2022-04-28T00:07:55.892552Z",
"status": {
"status_code": "UNSET"
},
"attributes": {
"http.method": "GET",
"http.server_name": "127.0.0.1",
"http.scheme": "http",
"net.host.port": 5000,
"http.host": "localhost:5000",
"http.target": "/rolldice",
"net.peer.ip": "127.0.0.1",
"http.user_agent": "curl/7.68.0",
"net.peer.port": 53824,
"http.flavor": "1.1",
"http.route": "/rolldice",
"http.status_code": 200
},
"events": [],
"links": [],
"resource": {
"attributes": {
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.14.0",
"telemetry.auto.version": "0.35b0",
"service.name": "unknown_service"
},
"schema_url": ""
}
}
The parent_id
of roll
is the same is the span_id
for /rolldice
,
indicating a parent-child relationship!
Metrics
Now modify app.py
to include code that initializes a meter and uses it to
create a counter instrument which counts the number of rolls for each possible
roll value:
# These are the necessary import declarations
from opentelemetry import trace
from opentelemetry import metrics
from random import randint
from flask import Flask
tracer = trace.get_tracer("diceroller.tracer")
# Acquire a meter.
meter = metrics.get_meter("diceroller.meter")
# Now create a counter instrument to make measurements with
roll_counter = meter.create_counter(
"dice.rolls",
description="The number of rolls by roll value",
)
app = Flask(__name__)
@app.route("/rolldice")
def roll_dice():
return str(roll())
def roll():
with tracer.start_as_current_span("roll") as rollspan:
res = randint(1, 6)
rollspan.set_attribute("roll.value", res)
# This adds 1 to the counter for the given roll value
roll_counter.add(1, {"roll.value": res})
return res
Now run the app again:
opentelemetry-instrument \
--traces_exporter console \
--metrics_exporter console \
flask run -p 8080
When you send a request to the server, you’ll see the roll counter metric emitted to the console, with separate counts for each roll value:
View example output
{
"resource_metrics": [
{
"resource": {
"attributes": {
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.12.0rc1",
"telemetry.auto.version": "0.31b0",
"service.name": "unknown_service"
},
"schema_url": ""
},
"scope_metrics": [
{
"scope": {
"name": "app",
"version": "",
"schema_url": null
},
"metrics": [
{
"name": "dice.rolls",
"description": "The number of rolls by roll value",
"unit": "",
"data": {
"data_points": [
{
"attributes": {
"roll.value": 4
},
"start_time_unix_nano": 1654790325350232600,
"time_unix_nano": 1654790332211598800,
"value": 3
},
{
"attributes": {
"roll.value": 6
},
"start_time_unix_nano": 1654790325350232600,
"time_unix_nano": 1654790332211598800,
"value": 4
},
{
"attributes": {
"roll.value": 5
},
"start_time_unix_nano": 1654790325350232600,
"time_unix_nano": 1654790332211598800,
"value": 1
},
{
"attributes": {
"roll.value": 1
},
"start_time_unix_nano": 1654790325350232600,
"time_unix_nano": 1654790332211598800,
"value": 2
},
{
"attributes": {
"roll.value": 3
},
"start_time_unix_nano": 1654790325350232600,
"time_unix_nano": 1654790332211598800,
"value": 1
}
],
"aggregation_temporality": 2,
"is_monotonic": true
}
}
],
"schema_url": null
}
],
"schema_url": ""
}
]
}
Send telemetry to an OpenTelemetry Collector
The OpenTelemetry Collector is a critical component of most production deployments. Some examples of when it’s beneficial to use a collector:
- A single telemetry sink shared by multiple services, to reduce overhead of switching exporters
- Aggregating traces across multiple services, running on multiple hosts
- A central place to process traces prior to exporting them to a backend
Unless you have just a single service or are experimenting, you’ll want to use a collector in production deployments.
Configure and run a local collector
First, save the following collector configuration code to a file in the /tmp/
directory:
# /tmp/otel-collector-config.yaml
receivers:
otlp:
protocols:
grpc:
exporters:
# NOTE: Prior to v0.86.0 use `logging` instead of `debug`.
debug:
verbosity: detailed
processors:
batch:
service:
pipelines:
traces:
receivers: [otlp]
exporters: [debug]
processors: [batch]
metrics:
receivers: [otlp]
exporters: [debug]
processors: [batch]
Then run the docker command to acquire and run the collector based on this configuration:
docker run -p 4317:4317 \
-v /tmp/otel-collector-config.yaml:/etc/otel-collector-config.yaml \
otel/opentelemetry-collector:latest \
--config=/etc/otel-collector-config.yaml
You will now have an collector instance running locally, listening on port 4317.
Modify the command to export spans and metrics via OTLP
The next step is to modify the command to send spans and metrics to the collector via OTLP instead of the console.
To do this, install the OTLP exporter package:
pip install opentelemetry-exporter-otlp
The opentelemetry-instrument
agent will detect the package you just installed
and default to OTLP export when it’s run next.
Run the application
Run the application like before, but don’t export to the console:
opentelemetry-instrument flask run -p 8080
By default, opentelemetry-instrument
exports traces and metrics over OTLP/gRPC
and will send them to localhost:4317
, which is what the collector is listening
on.
When you access the /rolldice
route now, you’ll see output in the collector
process instead of the flask process, which should look something like this:
View example output
2022-06-09T20:43:39.915Z DEBUG debugexporter/debug_exporter.go:51 ResourceSpans #0
Resource labels:
-> telemetry.sdk.language: STRING(python)
-> telemetry.sdk.name: STRING(opentelemetry)
-> telemetry.sdk.version: STRING(1.12.0rc1)
-> telemetry.auto.version: STRING(0.31b0)
-> service.name: STRING(unknown_service)
InstrumentationLibrarySpans #0
InstrumentationLibrary app
Span #0
Trace ID : 7d4047189ac3d5f96d590f974bbec20a
Parent ID : 0b21630539446c31
ID : 4d18cee9463a79ba
Name : roll
Kind : SPAN_KIND_INTERNAL
Start time : 2022-06-09 20:43:37.390134089 +0000 UTC
End time : 2022-06-09 20:43:37.390327687 +0000 UTC
Status code : STATUS_CODE_UNSET
Status message :
Attributes:
-> roll.value: INT(5)
InstrumentationLibrarySpans #1
InstrumentationLibrary opentelemetry.instrumentation.flask 0.31b0
Span #0
Trace ID : 7d4047189ac3d5f96d590f974bbec20a
Parent ID :
ID : 0b21630539446c31
Name : /rolldice
Kind : SPAN_KIND_SERVER
Start time : 2022-06-09 20:43:37.388733595 +0000 UTC
End time : 2022-06-09 20:43:37.390723792 +0000 UTC
Status code : STATUS_CODE_UNSET
Status message :
Attributes:
-> http.method: STRING(GET)
-> http.server_name: STRING(127.0.0.1)
-> http.scheme: STRING(http)
-> net.host.port: INT(5000)
-> http.host: STRING(localhost:5000)
-> http.target: STRING(/rolldice)
-> net.peer.ip: STRING(127.0.0.1)
-> http.user_agent: STRING(curl/7.82.0)
-> net.peer.port: INT(53878)
-> http.flavor: STRING(1.1)
-> http.route: STRING(/rolldice)
-> http.status_code: INT(200)
2022-06-09T20:43:40.025Z INFO debugexporter/debug_exporter.go:56 MetricsExporter {"#metrics": 1}
2022-06-09T20:43:40.025Z DEBUG debugexporter/debug_exporter.go:66 ResourceMetrics #0
Resource labels:
-> telemetry.sdk.language: STRING(python)
-> telemetry.sdk.name: STRING(opentelemetry)
-> telemetry.sdk.version: STRING(1.12.0rc1)
-> telemetry.auto.version: STRING(0.31b0)
-> service.name: STRING(unknown_service)
InstrumentationLibraryMetrics #0
InstrumentationLibrary app
Metric #0
Descriptor:
-> Name: roll_counter
-> Description: The number of rolls by roll value
-> Unit:
-> DataType: Sum
-> IsMonotonic: true
-> AggregationTemporality: AGGREGATION_TEMPORALITY_CUMULATIVE
NumberDataPoints #0
Data point attributes:
-> roll.value: INT(5)
StartTimestamp: 2022-06-09 20:43:37.390226915 +0000 UTC
Timestamp: 2022-06-09 20:43:39.848587966 +0000 UTC
Value: 1
Next steps
There are several options available for automatic instrumentation and Python. See Automatic Instrumentation to learn about them and how to configure them.
There’s a lot more to manual instrumentation than just creating a child span. To learn details about initializing manual instrumentation and many more parts of the OpenTelemetry API you can use, see Manual Instrumentation.
There are several options for exporting your telemetry data with OpenTelemetry. To learn how to export your data to a preferred backend, see Exporters.
If you’d like to explore a more complex example, take a look at the OpenTelemetry Demo, which includes the Python based Recommendation Service and Load Generator.